
141

Metallurgical and Materials Data 2, no. 4 (2024): 141-146 

Publisher: Association of Metallurgical Engineers of Serbia

Metallurgical and Materials Data

www.metall-mater-data.com

Prediction of Sinter Productivity Utilizing Deep Learning Frameworks: 
A Multivariate Analysis

SVS Raja Prasad, Rambabu Mukkamala*, Vishnu Namboodiri
School of Energy & Clean Technology, NICMAR University of Construction Studies, Shamirpet, Hyderabad, Telangana State, India

* Corresponding authors.
E-mail address: rmukkamala@nicmar.ac.in (Rambabu Mukkamala).

A R T I C L E  I N F O R M A T I O N :

https://doi.org/10.56801/MMD42

Received: 21 November 2024

Accepted: 24 December 2024

Type of paper: Research paper

A B S T R A C T

The productivity of a sinter machine is a key techno-economic factor in steel plant 
operations. It depends on the precise composition of several constituents agglomerated 
to form sinter for blast furnaces. Understanding the interrelationships between these 
constituents and their effects on sinter productivity presents opportunities for improvement, 
and innovative methods can enhance impact assessment beyond traditional experimentation. 
This paper explores the application of deep learning (DL) methodologies to improve sinter 
plant productivity prediction. By gathering industrial data from an integrated steel plant, this 
study provides insights for optimizing operational efficiency. The methodology employs Long 
Short-Term Memory (LSTM), Bi-directional LSTM (BiLSTM), and Convolutional Neural 
Network BiLSTM (CNN-BiLSTM) to forecast productivity using sixteen input parameters. 
Results are compared with baseline machine learning (ML) models: Random Forest (RF), 
Support Vector Machines (SVM), and Extreme Gradient Boosting (XGBoost). The novel CNN-
BiLSTM architecture outperforms baseline models, achieving a Mean Absolute Error (MAE) 
of 0.0239 T/m²·hr, Mean Squared Error (MSE) of 0.0009 T/m²·hr, Root Mean Squared Error 
(RMSE) of 0.0301 T/m²·hr, and R² of 0.8982. Evaluation metrics are statistically validated 
using the Diebold-Mariano (DM) test.
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metrics.
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1. Introduction

The efficiency of sinter plants critically determines blast furnace 
productivity, which directly influences overall steel plant efficiency. 
Enhancing the operations of the sinter plant is essential for improving 
the comprehensive productivity of steel production facilities. In 
response to this, many steel producers are proactively integrating 
cutting-edge automation technologies into their sinter plants as part 
of their modernization initiatives. This strategic approach not only 
enhances operational performance but also positions these producers 
for greater success in the industry. Researchers and engineers are 
dedicated to improving sinter plant operations, as advancements yield 
significant techno-economic benefits (Arpit et al. 2021). 

One of the primary challenges associated with the sintering process 
is the degradation of the chemical quality of iron ores, which can have 
a detrimental effect on the quality of the produced sinter. To address 
this issue, the parameters of the sintering process have been optimized 
through the application of ML algorithms and a simulated annealing 
algorithm with an objective to enhance sinter productivity and improve 
the overall effectiveness of the process (Karina and Flávio 2024). The 

ability to predict sinter productivity is a vital resource for identifying 
potential losses and enhancing the operational efficiency of the sinter 
plant. It is imperative for sintering plants to minimize fuel energy 
consumption and carbon emissions while maximizing both the yield 
and the quality of sinter ore to comply with environmental protection 
standards. However, the inherent complexity of the sintering process 
complicates the ability of operators to adjust chemical compositions 
and process parameters to achieve multiple optimization objectives 
concurrently. As a result, considerable research efforts have focused on 
the development of data-driven optimization models for the sintering 
process (Feng Yan et al., 2023). Consequently, it is essential to develop 
systematic approaches and tools to facilitate informed decision-making. 
Such advancements are crucial for effective and environmentally 
friendly practices. The implementation of ML algorithms offers a 
valuable approach to predicting sinter productivity and other key 
parameters that significantly influence the sintering process. This can 
lead to enhanced efficiency and improved outcomes in production 
(Singh, et. al 2020). Numerous studies have been conducted to 
enhance sinter productivity. These investigations have employed are, 
backpropagation artificial neural network (ANN) models, fuzzy neural 
networks (FNN), and genetic algorithm (GA) systems to predict the 
chemical composition of the final sinter product. Additionally, ANN 
models have been utilized to forecast the burning–through-point, 
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strength and quality of sinter demonstrating the potential of these 
advanced methodologies to optimize the sintering process and improve 
overall operational efficiency (Liao 2000; Liu 2023; Reihanian, 2011; 
Song 2020, Zhang 2007). The analysis of datasets related to sinter 
process variables is critical for optimizing the sintering process. 
This optimization can lead to enhanced productivity, reduce energy 
consumption, and minimized waste (Song Liu et al., 2020). The studies 
in the past were primarily concentrated on the enhancement of sinter 
production through a detailed experimental analysis of various process 
parameters. The influence of the physical characteristics of input raw 
materials on the productivity of sinter machines was not studied in the 
past. To address this, the study examines the effectiveness and efficiency 
of these DL architectures in accurately forecasting the productivity of 
the sinter plant, thereby contributing valuable insights to the steel 
industry. 

This study presents a valuable analysis utilizing a multivariate 
dataset with sixteen input parameters that influence sinter productivity. 
It examines the potential of LSTM, Bi LSTM, and CNN Bi LSTM 
algorithms to enhance our understanding of the various factors affecting 
productivity in this domain. By comparing the results, the research 
aims to identify the most effective DL architecture, paving the way for 
improved outcomes in sinter productivity analysis.

2. Materials and methods

2.1. Data collection

This dataset contains sinter machine productivity as output and 
sixteen input parameters:  iron ore Fines total Fe %, iron ore (IO) Fines 
SiO2 %, IO Fines Al2O3 %, IO CaO %, flux CaO %, flux MgO %, flux 
crushing index (CI) %, coke CI %, sinter total Fe %, sinter FeO %, sinter 
SiO2 %, sinter Al2O3 %, sinter CaO %, sinter MgO %, sinter +40mm Size 
%, and drum tumbling index (DTI) %. The secondary dataset provides 
valuable insights into the operations of an integrated steel plant located 
in India (Rath and Sushant 2021). The dataset analyzed comprised 
449 samples, each incorporating sixteen input parameters classified as 
independent variables. The primary focus of the analysis was to assess 
sinter productivity as the target variable. To facilitate this evaluation, 
three distinct deep learning frameworks were implemented, providing a 
robust approach to the data analysis. The framework outlining the steps 
involved in the process of DL architecture is illustrated in Figure 1.

 The study aimed to evaluate the performance of ML and DL models. 
This section primarily details the structure of the DL frameworks used 
in the analysis. Both ML and DL models were employed to assess 
the effectiveness of various model parameters in predicting sinter 

productivity. While the ML models were included mainly for comparison 
purposes, the primary focus of the study is to identify the best DL model 
that demonstrates high prediction accuracy.

2.2. LSTM model

The LSTM model incorporates memory cells that are regulated by 
gates. There are three distinct types of gates: the input gate, output 
gate, and forget gate. These gates govern the flow of information and 
are integral to the mixing and transformation of data within the LSTM 
framework illustrated in Figure 2.

The memory module is capable of storing permanent training 
data, while the cell state memory facilitates the retention of long-term 
dependencies. The aforementioned gates can be categorized as memory 
gates, input gates (I/P gates), and output gates (O/P gates). Distinct 
memory cells are utilized to store both short-term and long-term 
memories. This architecture can be metaphorically likened to a conveyor 
belt, pervading the entire system with minimal direct connectivity to the 
gates. LSTM models are highly effective for classifying processes and 
making predictions based on time series data. The output generated 
by the LSTM layer, referred to as the hidden state, serves as input for 
further processing. The Sigmoid layer produces a value ranging from 
0 to 1, indicating the extent to which each segment of data should be 
transmitted (Memarzadeh and Keynia 2020).

Fig. 2. LSTM cell structure 

Fig. 1. Framework of DL models
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2.3. Bidirectional LSTM model

Bi LSTM is an extension of LSTM that includes both past and future 
states. Data is processed forward and backward to obtain more accurate 
predictions compared to the general LSTM model. This is because 
additional features can be extracted during the recovery phase. The 
structure of the Bi LSTM model is shown in Figure 3.

Fig. 3. Schematic diagram of Bidirectional LSTM structure (Isibor Kennedy et 
al. 2020)

2.4. CNN BiLSTM model

The advantages of CNN and BiLSTM models are good because 
their performance is better than baseline models. In addition, the 
improvement of existing models is done by hybridization models (e.g., 
combining two models to take advantage of both models), and one of the 
effects is the CNN - BiLSTM model. The performance of CNN-BiLSTM 
depends on the architecture and hyperparameters. For example, the 
new CNN-BiLSTM architecture proposed in this paper consists of layers 
such as convolutional, max pooling, flatten, bidirectional, dropout and 
the dense layer. The dropout layers in the proposed model help to avoid 
overfitting scenarios. Whereas the maxpooling layers help sampling 
operations and flatten layers focuses on the reshape operations. The 
architecture adopted by the present study is given in the Figure 4.

Fig. 4. Proposed novel architecture of CNN-BiLSTM

2.5. Performance metrics

The performance of the proposed models is evaluated using the error 
metrics such as MAE, MSE, RMSE and R2, as shown in Equations (1) – 
(4).

Where, A represents the actual value, represents the predicted value,  
represents the mean of actual value and n is the number of observations.

1

2

 3

4

2.6. Validation

The most effective model identified in the analysis was subjected to 
statistical validation through the Diebold-Mariano (DM) test. This test 
serves as a robust tool for assessing the statistical outcomes of the models 
and for comparing their predictive accuracy. The primary objective is to 
examine the variability in prediction errors by utilizing metrics such as 
DM statistics and p-values. This analysis enables the determination of 
whether the observed differences in model performance are statistically 
significant (Mariano and Preve 2012). 

DM test enables analysts to evaluate whether one predictive model 
demonstrates a statistically significant improvement over another model 
or whether the observed differences in performance can be attributed to 
random fluctuations within the data (Mohammed and Mousa 2019).

The following outlines the steps and equations employed in the DM 
test:

• In order to define the forecast errors, denote er1t and er2t as the 
forecast errors associated with Model 1 and Model 2 at time t, 
respectively. These errors represent the discrepancies observed 
during the testing phase.

• To calculate the loss differential ldt, one must consider the 
difference in forecasted errors through the application of a 
loss function LF, which is designated as the squared error. The 
expression for the differential is delineated in Equation (5):

ldt = LF (er1t) – LF (er2t) = (er1t2 − e2t2) 5
• To calculate the mean loss differential, the mean value, referred 

to as , is obtained through the application of Equation (6).

6

The DM statistics (DM_st) test is generally computed utilizing 
Equation (7).

7

where σld2 signifies the estimate of variance associated with ldt, and T 
denotes the number  of forecasted periods.

Hypothesis Testing: This analysis begins with the assumption of the 
null hypothesis (H0), which asserts that the forecasting accuracy of both 
models is equivalent. The DM_st is asymptotically distributed according 
to a standard normal distribution. A rejection of H0 is warranted when 
the absolute value of the DM_st is notably high, thereby indicating a 
significant discrepancy in the forecasting performance between the two 
models.

3. Results and discussion

The study involved the collection of sample data pertaining to 
sixteen input parameters and one output parameter, specifically sinter 
productivity, resulting in a total of 449 samples. The data underwent 
standardization following the removal of extreme and null values. 
Subsequently, a dataset comprising 371 samples was utilized for analysis 
through the implementation of RF, SVM, XGBoost, LSTM, BiLSTM, 
and CNN BiLSTM models. The statistical characteristics of the dataset, 
including metrics such as minimum (min), maximum (max), standard 
deviation, and the number of data points are delineated in (Table 1). 
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The data underwent normalization to a range of 0 to 1 using the 
MinMax scaler prior to the division of the dataset into training and 
testing subsets. Specifically, 80% of the data, comprising 297 samples, 
was designated for training purposes, while the remaining 20%, totaling 
74 samples, was allocated for testing. The predictive capability of the 
model was evaluated through the application of five metrics: MAE, 
MSE, RMSE, and R². These metrics were utilized to compare the actual 
values against the predicted outcomes.

3.1. Parameters and the experimental models

In this study, the performance of multivariate RF, SVM, XGBoost, 
LSTM, BiLSTM, and CNN-BiLSTM models was systematically compared 
using various evaluation metrics. To ensure a valid comparison, the 
model architecture and training parameters were standardized across 
all models. The Adam optimizer was utilized to compute an adaptive 
learning rate, which is derived from the means of the first and second 
moments of the gradient. The learning rate was established at 0.01, 
and the MAE was employed as the loss function. MAE is particularly 
effective as it quantifies the average magnitude of errors in predictions 
without regard to their direction, thereby demonstrating robustness 
against outliers. 

A series of experiments were conducted by varying the key 
parameters, including batch size, number of epochs, learning rate, time 
step, and window length. The most favorable outcomes were achieved 
with a batch size of 32 and a total of 75 epochs. The training process 
incorporated sixteen input parameters along with the output, which 
represents the productivity of sinter for the samples after preprocessing. 
Following the completion of training, the test dataset was utilized for 
predictive analysis. 

The evaluation indicators utilized in this analysis—MAE, MSE, 
RMSE, and R² are employed to compare the results of ML and DL 
models. These indicators serve to quantify the discrepancies between 
the predicted and actual values of sinter productivity, with the 
corresponding metrics presented in Table 2. The CNN BiLSTM model 
achieved an R² score of 0.8982, which is superior to that of the baseline 
models. Moreover, the MAE, MSE, and RMSE scores for the CNN 
BiLSTM model are reported as 0.0238, 0.0009 and 0.0301 respectively. 
These findings clearly demonstrate that the CNN BiLSTM approach 
exhibits enhanced performance in relation to the evaluation metrics.

The CNN Bi LSTM model’s plot comparing actual and predicted 
values for the last 71 samples is illustrated in Fig. 5 and Fig . 6.

Table 2. Evaluation parameters of sinter productivity data of ML and DL 
models

Model MAE MSE RMSE R2

RF 0.1368 0.0144 0.1200 0.7644

 SVM 0.1084 0.0126 0.1120 0.7766

XGBoost  0. 0976 0.0098 0.0990 0.8086

LSTM 0.0824 0.0086 0.0926 0.8341

BiLSTM 0.0576 0.0052 0.0721 0.8563

CNN-BiLSTM 0.0238 0.0009 0.0301 0.8982

Statistic SP  
(T/m2-hr)

I/O Fine
Total 
Fe %

I/O Fine 
SiO2 %

I/O Fine 
l2O3%

I/O 
Fine 

CaO %

Flux 
CaO %

Flux 
MgO %

Flux CI Coke CI Total 
Fe %

 FeO %  SiO2 % Al2O3 % CaO % MgO % +40mm 
Size, %

(DTI) %

count 371 371 371. 371 371 371 371 371 371 371 371 371 371 371 371 371 371

mean 1.14 60.6 4.6 2.7 0.7 36.2 9.3 88.1 81.2 54.9 8.67 6.01 2.59 10.4 2.6 10.2 72.3

std 0.08 0.36 0.47 0.23 0.15 0.51 0.46 3.88 0.85 0.82 0.08 0.51 0.17 0.54 0.10 2.34 1.83

min 0.93 59.8 3.59 2.17 0.39 34.7 8.35 77.2 78.8 53.5 8.47 4.96 2.16 9.25 2.44 4.80 68.00

25% 1.08 60.3 4.06 2.60 0.69 35.8 8.88 84.4 80.6 54.2 8.62 5.50 2.46 10.1 2.61 8.70 71.30

50% 1.14 60.6 4.80 2.78 0.80 36.2 9.50 90.1 81.0 54.7 8.66 6.30 2.59 10.5 2.69 9.70 72.00

75% 1.19 60.9 4.95 2.95 0.89 36.6 9.72 91.2 81.6 55.7 8.71 6.41 2.71 10.9 2.75 11.5 73.30

max 1.31 61.5 5.68 3.37 1.10 37.5 10.0 93.3 83.3 56.6 8.86 6.81 2.94 11.5 3.00 20.0 76.70

Table 1. Descriptive statistics of the input and output parameters 

Fig. 5. Plot of Actual vs predicted values of test data
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Fig . 6. Plot between Actual and Predicted values

To validate the results of the predictions, the DM test was employed. 
The CNN BiLSTM model, noted for its superior performance, served 
as the baseline for comparison against other models, specifically RF, 
SVM, XGBoost, LSTM, and BiLSTM. The null hypothesis (H0) asserts 
that there is no significant difference between the CNN BiLSTM model 
and the other models. In contrast, the alternative hypothesis (H1) posits 
that the predictive power of the CNN BiLSTM model is superior, while 
hypothesis H2 suggests that the other models exhibit higher output 
power in comparison to CNN BiLSTM. Mean Squared Error (MSE) 
was utilized as the error metric for model comparisons (Harvey et., al 
1997). A confidence level of 95% was established for this investigation, 
indicating that a p-value exceeding 0.05 would lead to the non-
rejection of the null hypothesis. Conversely, a p-value below 0.05 would 
necessitate the selection of either H1 or H2. If the DM_ st is negative, 
H1 will be accepted; otherwise, H2 will be endorsed. The results of the 
DM Test is presented in Table 3. The results of the DM test indicate 
that the p-value is less than 0.05 for all analyzed models, including RF, 
SVM, XGBoost, LSTM, and BiLSTM. Consequently, the null hypothesis 
is rejected. In this situation, the decision should be based on the DM_
st, which substantiates the superior predictive accuracy of the CNN 
BiLSTM model compared to the other models.

Table 3. Results of DM test

MSE RF SVM XGBoost LSTM BiLSTM

DM_st -11.251 -9.582 -9.654 -6.923 -3.733

p 0.0006 0.0004 0.0001 0.0000 0.0000

The implementation of predictive analytics facilitates the 
identification of trends in input parameters that exert a direct influence 
on sinter quality. This methodology provides a robust framework for 
ongoing improvement. The variability associated with the quality of raw 
materials presents considerable challenges to the maintenance of sinter 
productivity. This study employs multivariate analysis to clarify the 
intricate interactions among various input parameters. By harnessing 
these insights, operators are equipped to make proactive adjustments 
to both raw material compositions and processing settings, thereby 
alleviating the impact of variability. This systematic approach ensures the 
stability of both sinter productivity and quality, even amidst fluctuations 
in raw material characteristics. The results of the study were compared 
with prior research related to the prediction of sinter productivity. . The 
application of a multi-layer perceptron framework, consisting of one 
hidden layer with nine neurons, resulted in a correlation coefficient 
of 0.77 between the predicted values and the actual measurements of 

sinter productivity (Thiago et., al 2021). To forecast the productivity 
of the sinter plant, linear regression and a back-propagation algorithm 
were utilized. In this context, the productivity of the sinter plant was 
designated as the output variable, while 16 additional parameters were 
treated as input variables. The results indicated a correlation coefficient 
of 0.522 for the linear regression model, in contrast to 0.764 for the back-
propagation algorithm (Arpit, Subhra, and Sushant 2021). Importantly, 
the results from the CNN BiLSTM model in the present study exceeded 
those of the ML and ANN models applied in earlier research, achieving 
a correlation coefficient of 0.9477 (R² = 0.8982). Furthermore, the CNN 
BiLSTM model demonstrated enhanced predictive capabilities, with its 
predicted values closely aligning with the trend of the original dataset 
when compared to the LSTM and BiLSTM models.

The findings of this research present actionable strategies for the 
enhancement of sinter plant operations through the implementation 
of real-time adjustments to input variables and the establishment of 
optimal production conditions. Furthermore, the predictive insights 
function as a decision-support tool for plant managers, facilitating 
informed interventions to maximize the quality of the sinter produced. 
The study effectively establishes a connection between theoretical 
models and practical applications within the metallurgical industry 
through the application of predictive methodologies. The observed 
improvements in sinter quality, fuel efficiency, and process stability 
underscore the significant transformative potential of deep learning in 
the steel sector.

4. Conclusion

The objective of this study is to predict sinter productivity based 
on sixteen input variables derived from a sinter plant. The outcomes 
of this research are pertinent to all stakeholders associated with steel 
manufacturing. Sinter plant productivity represents a crucial techno-
economic parameter that is influenced by numerous factors, which are 
challenging to evaluate through physical experimentation to determine 
their interrelationships. It serves as an indicator of the efficiency of 
the sintering process, functions as a parameter for monitoring the 
performance of the sinter plant, and acts as a benchmarking tool for such 
facilities. In order to predict sinter productivity, three ML algorithms 
and three DL frameworks were employed. Among these frameworks, 
the CNN-BiLSTM model exhibited superior R² scores, demonstrating 
enhanced predictive capabilities for sinter productivity compared to the 
other models. The innovative architecture of CNN-BiLSTM has been 
shown to deliver improved performance for sinter productivity data. 
The predicted and actual values of sinter productivity from the CNN-
BiLSTM model were statistically validated against the results of the ML 
and DL models using the DM test, thereby establishing that the CNN-
BiLSTM model significantly outperforms the other models. Future 
research may expand upon this study by incorporating a larger dataset 
of sinter productivity along with related variables to yield improved 
results and enhance the overall performance of sinter plants.
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