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A B S T R A C T

Titanium alloys are widely applied, particularly in biomedical engineering, due to their 
exceptional combination of mechanical strength, corrosion resistance, and biocompatibility. 
The low modulus of elasticity of these titanium alloys in comparison to other materials used 
in medical applications is a main characteristic. However, some of these alloys’ components, 
such as aluminum and vanadium, can have adverse effects on the human body. Consequently, 
new titanium alloys with low modulus of elasticity and no toxic alloying elements are currently 
being developed. In this research, 238 titanium alloys were collected, almost entirely composed 
of biocompatible alloying elements. The primary motivation behind creating such a database 
is to establish a foundation for designing new alloys using machine learning methods. The 
database can assist researchers, engineers, and biomedical professionals in developing 
titanium alloys for various medical applications, thereby improving health outcomes and 
driving advancements in biomaterials and biomedical engineering.
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1. Introduction

Titanium alloys are categorized as critical materials in medical 
applications due to their unique properties, including biocompatibility, 
corrosion resistance, and mechanical strength. They are widely applied 
in orthopedic implants, prosthetic hips, and joint prostheses (Liang et 
al. 2020, Sidhu et al. 2021). These materials must withstand the hostile 
environment of the human body, where they are exposed to a corrosive 
environment with a pH of approximately 7 and daily bone stress levels 
of approximately 4 MPa (Eliaz, 2019). The average load on a healthy hip 
joint can reach up to three times a person's body weight (up to 3000 
N), and extreme loads during a jump can reach up to ten times the body 
weight (Moghadasi et al. 2022, Cleather et al. 2013, Tanikić et al. 2012). 
Material fatigue can result from both the constant stress of the human 
body weight and the cyclic stress caused by friction between metal 
implants and bones. This friction leads to a reduction in the oxide layer's 
viability, surface damage, and the formation of free metal surfaces. An 
initial crack in the metal can be caused by friction and corrosion of the 
free metal surface. When this crack reaches a critical size under the 
present stress, it can rapidly propagate and lead to implant failure. In 
the human body, the friction of metal materials leads to the continuous 
release of metal ions, compounds, and wear products (Eliaz, 2019, 

Prasad et al. 2017). This demonstrates the potential for the human body 
to decompose metal implants, resulting in decreased durability due 
to chemical and mechanical stresses. Additionally, the release of toxic 
alloying elements from these implants can spread throughout the body, 
leading to various health issues (Davis et al. 2022, Markowska-Szczupak 
et al. 2020, Liang 2020). The toxicity of elements, including metals, is 
largely determined by their concentration in the human body; even bio-
elements can become toxic if their recommended levels are exceeded. 
When evaluating the biocompatibility and bioactivity of metal-based 
medical materials, it is critical to consider concentration-dependent 
toxicity, as the activity of certain ions can vary depending on their 
concentration in the medium (Milojkov et al., 2023). In the literature, 
the following alloying elements are considered toxic in titanium alloys: 
Pt, Al, V, Ni, Co, Cu, and Cr (Eliaz, 2019).

The need for a comprehensive database of titanium alloys for medical 
applications arises from the existing challenges in selecting suitable 
alloys that meet specific requirements regarding biocompatibility 
and mechanical properties. With many titanium alloys developed for 
biomedicine, it's crucial to identify alloys that possess good mechanical 
properties, have a modulus of elasticity close to that of bone (10 to 30 
GPa), and avoid toxic alloying elements. One widely used alloy, Ti-6Al-
4V, has shown long-term clinical issues due to the presence of aluminum 
and vanadium, which can cause harmful effects on the human body. To 
address this, researchers are investigating biocompatible elements, 
such as Ti, Nb, Zr, Ta, Ru, and Sn, to be included in new alloy designs. 
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Nonetheless, the cost of these components must be considered during 
the design of new materials. Employing porosity in metallic biomaterials 
can be advantageous, as it not only enhances biocompatibility but also 
reduces the modulus of elasticity, leading to better stress distribution 
and improved implant performance (Bandyopadhyay et al. 2022).

There are open-access databases available, such as MatWeb Titanium 
Alloy Property Data (MatWeb 2023), but they do not specifically focus 
on biocompatible alloys (over 390 titanium alloys). Currently, there is 
a newer open-access database named "A compilation of experimental 
data on the mechanical properties and microstructural features of 
Ti-alloys," with about a 7% overlap with our database (Salvador et al. 
2022). This database also includes toxic alloying elements, such as 
Al and V. Some researchers have reported employing databases for 
machine learning research, but the databases themselves have not been 
made public. For instance, Zou et al. 2021 reported on 41 binary and 81 
multicomponent Ti-alloys in their study. On the other hand, Wu et al. 
conducted comprehensive research on phase stability prediction using 
machine learning methods, where they collected 292 data points from 
63 studies (Wu et al., 2022), and presented 112 data points in their 
earlier paper (Wu et al., 2020) for the following elements: Ti, Nb, Zr, 
Sn, Mo, and Ta.

The objective of creating a titanium alloy database for medical 
applications is to provide a centralized, accessible, and comprehensive 
source for data on titanium alloys, connecting their composition with 
mechanical properties and biocompatibility. The creation of such a 
database is essential for the design of new titanium alloys, as it enables 
researchers to effectively employ a variety of methods and principles. 
This includes the Mo equivalent method, the electron-to-atom ratio 
(e/a) method (Tiwari and Ramanujan, 2001), the alloy design method 
based on d electrons (Song et al. 2000), experimental techniques (Zhu et 
al. 2021, Ehtemam-Haghighi et al. 2017), and finally using the machine 
learning methods (Xiong et al. 2020, Wu et al. 2020, 2022). The 
database enables researchers to optimize alloy design by considering 
the effects of different alloying elements, and mechanical and heat 
treatment on mechanical properties. Such a database streamlines the 
titanium alloy design process, allowing for more effective development 
of biomedical materials.

2. Methods

2.1. Data Sources and Collection Methods

The data sources for the database consist of high-quality, peer-
reviewed research papers, which were manually selected by the authors. 
The primary criterion for including titanium alloys in the database was 
their alloy composition, with a focus on non-toxic elements. Also, other 
elements are considered, as shown in the next sub-chapter. The non-
toxic elements considered for the database include:

Biocompatible elements: Nb, Zr, Ta, Ru, Sn;
Neutral elements: Fe, Mn, Si, W, Hf, Mo;
Alloy inclusions: O, N, C.
The database has been uploaded to the open-source platform Zenodo, 

which is a suitable platform for preserving and updating the database. 
Currently, 238 biocompatible titanium alloys have been collected.

To ensure the accuracy of the data, the authors have checked the 
information three times, and the dataset will be subjected to peer 
review alongside this manuscript. While the research papers used as 
data sources are peer-reviewed and considered credible, there is still 
a possibility that some data may be unreliable. If any unreliable data is 
confirmed by other peer-reviewed papers, the database on the Zenodo 
platform will be updated accordingly with the corrected information.

2.2. Database Structure and Organization

The database structure for titanium alloys used in medical 
applications consists of several columns, each providing specific 
information about the alloy:

1. "Sort": Facilitates alphabetical sorting based on alloying ele-
ment content (from highest to lowest), with a number rep-
resenting the rounded amount of the first alloyed element 
(datatype: string).

2. "Reference": Contains the source data cited in this paper's ref-
erences (datatype: string).

3. "Material": Refers to the content of alloying elements and alloy 
designation from the source paper (datatype: string).

4. "Product": Indicates the manufacturing method of the alloy
(datatype: string, missing data: 91).

5. "Mechanical treatment": Specifies the mechanical treatment 
applied to the alloy (datatype: string, missing data: 169).

6. "Deformation, %": Shows the degree of deformation after me-
chanical treatment (datatype: real number, missing data: 
176).

7. "Heat treatment": Describes the heat treatment for the alloy
(datatype: string, missing data: 115).

8. "HT1: T, C": Provides data for the temperature (in Celsius) of
the first heat treatment (datatype: real number).

9. "HT1: t, min": Gives data for the duration (in minutes) of the
first heat treatment (datatype: integer).

10. "HT2: T, C": Provides data for the temperature (in Celsius) of
the second heat treatment (datatype: real number).

11. "HT2: t, min": Gives data for the duration (in minutes) of the
second heat treatment (datatype: integer).

Columns 12-42 contain alloy composition data (first at.%, followed 
by wt.%) for each element: Ti, Nb, Zr, Ta, Sn, Fe, Mn, Si, V, Mo, Cu, Cr, 
O, N, C (datatype: real number).

43. “Module last, exp, GPa”: Experimentally determined value of
modulus of elasticity (or Young's modulus) of the alloy (data-
type: real number, no missing data).

44. “±d(GPa)”: Deviation from the experimentally determined
value of modulus of elasticity (or Young's modulus) of the al-
loy (datatype: real number).

45.  “Elongation, %”: Experimentally determined value for elonga-
tion (in %) of the alloy (datatype: real number, missing data: 
142).

46. “Max Tensile strength (MPa)”: Experimentally determined
value for tensile strength (in MPa) of alloy (datatype: real
number, missing data: 136).

47. “Yield strength (MPa)”: Experimentally determined value for
yield strength (in MPa) of the alloy (datatype: real number,
missing data: 138).

48. “Hardness (HV)”: Experimentally determined value for hard-
ness (in HV) of the alloy (datatype: real number, missing
data: 193).

49. Density”: Calculated density of the alloy using the formula:

1
i

n

D m D=∑

Where  mi is atomic weight, and  D is the density of the nth element in 
the alloy (datatype: real number).

50. “e/a ratio”: Electron-to-atom ratio, calculated using the formu-
la:

1
/

n

i ie a aV=∑

Where, Vi  is the total number of valence electrons in the valence 
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shell, and ai is the atomic percentage of the nth element in the alloy 
(datatype: real number).

51. “[Mo]eq_B”: Represents the Mo equivalent according to the
reference, calculated using a specific equation provided in the 
reference (Liang 2022):

[Mo]eq_B = Mo + 0.67 V + 0.44 W + 0.28 Nb + 0.22 Ta + 2.9 
Fe + 1.6 Cr + 0.77 Cu + 1.11 Ni + 1.43 Co + 1.54 Mn + 0.0 Sn + 
0.0 Zr - 1.0 Al (wt.%)
(Datatype: real number).

52. “[Mo]eq_Z”: Represents the Mo equivalent according to the
reference, calculated using a specific equation provided in the 
reference (Liang 2022):

[Mo]eq_Z = Mo + 0.74 V + 0.5 W + 0.39 Nb + 0.28 Ta + 2.2 
Fe + 1.69 Cr + 0.85 Cu + 1.22 Ni + 1.57 Co + 1.69 Mn + 0.0 Sn 
+ 0.0 Zr - 1.0 Al (wt.%)
(Datatype: real number).

53.  “[Mo]eq_W1”: Represents the Mo equivalent according to the 
reference, calculated using a specific equation provided in the 
reference (Liang 2022):

[Mo]eq_W1 = Mo + 1.25 V + 0.59 W + 0.28 Nb + 0.22 Ta + 
1.93 Fe + 1.84 Cr + 1.51 Cu + 2.46 Ni + 2.67 Co + 2.26 Mn + 
0.3 Sn + 0.47 Zr + 3.01 Si - 1.47 Al (wt.%)
(Datatype: real number).

54.  “[Mo]eq_W2”: Represents the Mo equivalent according to the 
reference, calculated using a specific equation provided in the 
reference (Liang 2022):

[Mo]eq_W2 = Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.3 Ta + 1.23 
Fe + 1.1 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn 
+ 0.34 Zr + 0.99 Si - 0.57 Al (wt.%)
(Datatype: real number).

55. “Bo - bond order”: The Bond order, calculated using the for-
mula:

1

n

i iBo m Bo=∑

Where  mi  is atomic weight, and Boi is the bond order of the nth 
element in the alloy (datatype: real number).

56. “d-orbital energy level (Md̅)”: d-orbital energy level, calculated 
using the formula:

1

n

i iM d m M d=∑

Where mi is atomic weight, and Md̅ is the d-orbital energy level of the 
nth element in the alloy (datatype: real number).

The data generated from calculations (columns 49-56) represent 
important parameters in material design. The additional calculated 
parameters can be included, as shown in the literature (Azmat et al. 
2021).

3. Discussion of the database

3.1. Description of the Contents and Structure

The titanium alloy database for medical applications is designed to 
enable the selection and development of biocompatible titanium alloys 
for medical applications. The database focuses on non-toxic elements 
and contains key information on:

- alloy's labels with references to the source of data,
- manufacturing methods, heat and mechanical treatment processes,
- alloy compositions,
- key mechanical properties,
- and additional calculated properties.
Having alloy labels with references to the source of data is important 

for maintaining order and reliability in a database. Along with labeling 

and citing the research sources, researchers can easily follow the origins 
of the data and assess its credibility. As new research may reveal varying 
mechanical properties for alloys with the same composition in this 
database, depending on factors such as mechanical and heat treatments, 
inclusions, or testing methods, it is essential to include as many details 
as possible.

Manufacturing methods in this database primarily involve arc 
melting or selective laser melting in a vacuum or argon atmosphere. 
Considering the high melting points of these alloys and titanium's high 
affinity for oxidation, this is reasonable. Applying mechanical or heat 
treatments to these alloys, or different combinations of these treatments 
to the same alloy, can provide researchers with valuable insights into 
the effects of these treatments on the alloy's structure and mechanical 
properties. Despite a significant amount of missing data, conclusions 
can still be drawn about the influence of certain mechanical and heat 
treatments on the structure and mechanical properties of titanium 
alloys. However, for machine learning methods, the optimal format for 
presenting such data remains a topic of discussion among the broader 
scientific community: whether using letters or numbers to represent 
specific heat or mechanical processing methods is more convenient. 
This database contains both formats for mechanical and heat treatment, 
but future reorganization is possible, mainly to accommodate machine 
learning research methods.

The author's primary focus in the current database is on 
biocompatible alloying elements, as the objective is to support 
machine learning algorithms that recognize patterns for creating new 
biocompatible titanium alloys. However, other alloying elements could 
potentially contribute to further research using machine learning 
methods. Although many elements are not currently included, future 
expansion of the database could incorporate them. This would enable 
researchers to explore a wider range of titanium alloys with potential 
applications beyond the medical field or within specialized areas of 
biomedical research.

Titanium alloys are widely used as implants in the human body, 
and one of their most important properties is a low elastic modulus. 
This is necessary to minimize the "stress shielding" effect, which occurs 
when an implant with a significantly higher elastic modulus than the 
surrounding bone tissue takes over most of the load, leading to bone 
loss and implant loosening over time. This is the primary reason why 
elastic modulus is a key parameter and is included in all research studies 
within our database. Approximately 20% of the data in the database 
includes information about the deviation of the modulus of elasticity. 
This is highly significant for machine learning methods, as it provides 
insight into the reliability of the data within a specific range. Data on 
elongation, tensile strength, yield strength, and hardness are relatively 
scarce in the database. However, this information is crucial, as it is 
directly related to the modulus of elasticity. Moreover, these mechanical 
properties may be essential for meeting specific requirements in 
certain biomedical applications, such as load-bearing implants, dental 
prosthetics, or orthopedic devices.

Derived (calculated) values, such as density, e/a ratio, Mo equivalents, 
Bo-bond order, and d-orbital energy level, are considered some of the 
most important factors in titanium alloy design. To analyze the effect 
of most β-stabilizers, Mo equivalents ([Mo]eq) have been developed by 
several researchers and employed in designing new alloys (Liang 2020, 
Sidhu et al. 2021). For biocompatible alloys, it would be intriguing to 
develop new equations for Mo equivalents that could more accurately 
account for the β-stabilization effect of these elements. Including bond 
order (Bo) and d-orbital energy level (Md) in the database is important 
because they provide insights into the fundamental interactions between 
titanium and alloying elements grounded in theoretical principles. The 
bond order (Bo) represents the covalent bond strength between titanium 
and an alloying element, while the d-orbital energy level (Md) reflects 
the properties of transition metals as alloying elements, determined by 
their metallic radius and electronegativity.
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3.2. Potential Biases and Limitations of the Database

The database relies on credible, high-quality, peer-reviewed 
research papers as its primary data source. However, there is still the 
possibility of unreliable data, which may impact the overall accuracy of 
the database. Updates may be required if issues are discovered.

Some mechanical properties, including elongation, tensile strength, 
yield strength, and hardness, have an insufficient number of data 
points in the database. This scarcity can render some methods, such as 
machine learning methods, impractical for application.

Although the database focuses on biocompatible elements, other 
elements or combinations may contribute to future research. Limiting 
the scope of the database to the selected elements could hinder alloy 
design discoveries.

Numerous factors, including mechanical and heat treatments, 
small amounts of inclusions, and non-standard testing procedures, can 
influence the mechanical properties of an alloy. It is possible that the 
database does not account for all these factors, which could result in 
data bias.

3.3. Future Directions and Expansion Database

Plans for updating and maintaining the database include:
- Regular updates: periodic updates to incorporate new research 

findings, ensure that the database remains relevant and cur-
rent with the most recent advancements in the field of titani-
um alloys for medical applications.

- Encourage researchers and experts to submit new data, correc-
tions, or updates, fostering a collaborative environment that 
enriches and improves the database.

- Establish a peer review procedure to evaluate the data's quality 
and dependability and to maintain the database's credibility.

Possible enhancements or additions to the database's structure and 
features:

- Expanded alloy compositions: Extend the database's scope to 
include additional alloying elements and their combinations.

- Enhanced treatment information: Enhance the database by 
adding more detailed information on mechanical and heat 
treatments; change the data type or reorganize it to better en-
able machine learning research.

- Integration with other databases or resources related to titani-
um alloys or medical materials.

- Including the quantitative proportion of phases (especially the 
beta phase) in the database as a parameter that has a direct 
influence on mechanical properties.

- Information regarding the concentrations of potentially toxic 
ions and their release from the implant, depending on the 
alloying elements contained in the titanium alloy, would be 
valuable.

4. Conclusion

The titanium alloy database for biomedical applications provides 
a valuable resource for researchers and professionals developing 
biocompatible titanium alloys for medical implants and devices. The 
database consolidates essential information on alloy compositions, 
manufacturing methods, mechanical properties, and derived key 
values, enabling a more systematic and efficient approach to materials 
research. The database has the potential to accelerate the discovery 
of novel materials with enhanced performance and biocompatibility 
by facilitating the application of machine learning methods. Plans for 
updating the database include regular updates, expanded functionality, 
and integration with other databases or resources pertaining to medical 
materials, ensuring its continued relevance and utility in the rapidly 
advancing field of materials science.
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