Ageing of Advanced Biomaterials

Authors

  • Rebeka Rudolf University of Maribor, Faculty of Mechanical Engineering; Zlatarna Celje d.o.o., Kersnikova ulica 19, 3000 Celje, Slovenia; Pomurje Science and Innovation Centre, Lendavska ulica 28, Rakičan, 9000 Murska Sobota, Slovenia https://orcid.org/0000-0003-0510-5752
  • Karlo Raić University of Belgrade, Faculty of Technology and Metallurgy, Serbia https://orcid.org/0000-0002-1713-0130

DOI:

https://doi.org/10.30544/MMD21

Abstract

The paper presents the ageing processes of advanced biomaterials. The medical profession considers ageing as a syndrome of universal, progressive, irreversible processes that take place at the molecular level (DNA, proteins, lipids) and at the organ level. Ageing is treated quite differently by the engineering profession, which considers it as wear, degradation, corrosion and deformation. In the tissue over time, changes in temperature, changes in pH value and the effect of large forces lead to changes in biomaterials, which are known in the literature as biomaterial ageing processes.

Keywords:

biomaterials, ageing, mechanisms

References

Arzt, Eduard, and Peter Grahle. "Dispersion Strengthening of Disordered and Ordered Metallic Materials: From Dislocation Mechanisms to New Alloys" International Journal of Materials Research 87, no. 11 (1996): 874-884. https://doi.org/10.1515/ijmr-1996-871109

Brick RM, Pense AW, Gordon RB: Structure and Properties of Engineering Materials, McGraw-Hill, New York, 1977: chap 2, 10.

Craig RG, Powers JM: Restorative Dental Materials, St Louis: Mosby, 2002: chap 15-17.

Eliades G, Eliades T, Brantley WA, Watts DC: Dental Materials in Vivo, Ageing and Related Phenomena. Quintessence, 2003.

Eliasson, S. T., and J. E. Dahl. "Effect of thermal cycling on temperature changes and bond strength in different test specimens." Biomaterial Investigations in Dentistry 7, no. 1 (2020): 16-24. https://doi.org/10.1080/26415275.2019.1709470

Géraldine Rohman, Materials Used in Biomaterial Applications Biomaterials (2014): 27-81. https://doi.org/10.1002/9781119043553.ch3

Guo, W. H., William A. Brantley, W. A. T. Clark, P. Monaghan, and M. J. Mills. "Transmission electron microscopic investigation of a Pd-Ag-In-Sn dental alloy." Biomaterials 24, no. 10 (2003): 1705-1712. https://doi.org/10.1016/S0142-9612(02)00564-1

Leinfelder, K. F. "Wear patterns and rates of posterior composite resins." International dental journal 37, no. 3 (1987): 152-157.

Mair, L. H., T. A. Stolarski, R. W. Vowles, and C. H. Lloyd. "Wear: mechanisms, manifestations and measurement. Report of a workshop." Journal of dentistry 24, no. 1-2 (1996): 141-148. https://doi.org/10.1016/0300-5712(95)00043-7

Oysaed, H., I. E. Ruyter, and I. J. Sjovik Kleven. "Release of formaldehyde from dental composites." Journal of Dental Research 67, no. 10 (1988): 1289-1294. https://doi.org/10.1177/00220345880670100901

Peutzfeldt, Anne. "Resin composites in dentistry: the monomer systems." European journal of oral sciences 105, no. 2 (1997): 97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x

Raić, Karlo. "Simplification of laminar boundary layer equations." Metallurgical and Materials Engineering 24, no. 2 (2018): 93-102. https://doi.org/10.30544/347

Raghavendra, G M & Varaprasad, Kokkarachedu & Jayaramudu, Tippabattini. (2015). Biomaterials: Design, Development and Biomedical Applications. https://doi.org/10.1016/B978-0-323-32889-0.00002-9

Rudolf, Rebeka, I. Anzel, Leo Gusel, D. Stamenkovi, A. Todorovi, and M. Colic. "Microstructural analyses of two high noble gold-platinum alloys before and after conditioning in a cell culture medium." Metals and materials international 16 (2010): 931-940. https://doi.org/10.1007/s12540-010-1211-4

Ruowei Y., Huiqun L., Danqing Y., Weifeng W., Bin W., Yong J., Qi Y., Dingchun W., Qi G., Yanfei X., Qian T., "Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during ageing", Materials Science and Engineering: C, 63, (2016): 577-586. https://doi.org/10.1016/j.msec.2016.03.030

Szczesio-Wlodarczyk, Agata, Magdalena Fronczek, Katarzyna Ranoszek-Soliwoda, Jarosław Grobelny, Jerzy Sokolowski, and Kinga Bociong. "The first step in standardizing an artificial aging protocol for dental composites-evaluation of basic protocols." Molecules 27, no. 11 (2022): 3511. https://doi.org/10.3390/molecules27113511

Söderholm, K. J., and N. D. Richards. "Wear resistance of composites: a solved problem?." General Dentistry 46, no. 3 (1998): 256-63.

Vermilyea, Stanley G., Eugene F. Huget, and Jesus M. Vilca. "Observations on gold-palladium-silver and gold-palladium alloys." The Journal of Prosthetic Dentistry 44, no. 3 (1980): 294-299. https://doi.org/10.1016/0022-3913(80)90015-3

Uchida, Hirobumi, Jayalakshmi Vaidyanathan, Trithala Viswanadhan, and Tritala K. Vaidyanathan. "Color stability of dental composites as a function of shade." The Journal of prosthetic dentistry 79, no. 4 (1998): 372-377. https://doi.org/10.1016/S0022-3913(98)70147-7

Winn, Htain, Koh-ichi UDOH, Yasuhiro TANAKA, Rhodora Isidro HERNANDEZ, Yasuko TAKUMA, and Kunihiro HISATSUNE. "Phase transformations and age-hardening behaviors related to Au3Cu in Au-Cu-Pd alloys." Dental materials journal 18, no. 3 (1999): 218-234. https://doi.org/10.4012/dmj.18.218

Published

02-04-2024

Issue

Section

Advanced Biomaterials in Demanding Applications