The Microstructure Characterization of Al-alloy AW 5454 Intended for Ecological Laser Hybrid Welding

Microstructure characterization of Al-alloy AW 5454 intended for ecological laser hybrid welding

Authors

DOI:

https://doi.org/10.30544/MMD30

Abstract

The article deals with the presentation of the microstructure characterization of Al-alloy AW 5454, which is intended for laser hybrid welding. In the first part, the procedure of laser hybrid welding and comparison to other laser surface modification techniques is presented. In the following, the key methods of metallographic characterization and hardness measurements at selected locations of Al-alloy AW 5454 are presented, which made it possible to carry out a scientific evaluation of the obtained results. The goal of the research was to gain insight into the microstructure of Al-alloy AW 5454, which in the future will make it possible to determine those technological parameters of laser hybrid welding that have the greatest influence on the resulting final microstructure and thus on the properties of the weld.

Keywords:

Al-alloys, laser treatment, characterisation, microstructure, hardness

References

Abeens, M, R. Muruganandhan, K. Thirumavalavan, and S. Kalainathan. "Surface Modification of AA7075 T651 by Laser Shock Peening to Improve the Wear Characteristics." Materials Research Express 6, no. 6 (2019): 66519-32. https://doi.org/10.1088/2053-1591/ab0b0e.

Biswas, Sourabh. "Laser Surface Melting of Carbon Coated AA7075 Aluminum Alloy: Structural Transformations and Tribological Behavior." ProQuest Dissertations Publishing, 2014.

Broitman, Esteban. "Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview." Tribology Letters 65, no. 1 (2016): 23. https://doi.org/10.1007/s11249-016-0805-5.

Buehler, "Buehler SumMetTM Metallography Techniques and Fundamentals Classes Offered in 2018." PRWeb Newswire, 2018.

Cavaliere, Pasquale. Laser Cladding of Metals. Springer International Publishing, 2021. https://doi.org/10.1007/978-3-030-53195-9.

Chen, Chao, Xinyue Cong, Jiuqing Liu, and Huijing Zhang. "Influences of Heat Input on the Geometric Parameters and Element Distribution of CrMnFeCoNi High-Entropy Alloy Coating on Aluminum Alloy Using Laser Cladding." Transactions of the Indian Institute of Metals 76, no. 5 (2023): 1271-80. https://doi.org/10.1007/s12666-022-02825-w.

Conserva, M, G. Donzelli, and R. Trippodo. Aluminium and Its Applications. Edimet, 1992.

Dai, Hongjie. "Carbon nanotubes: opportunities and challenges." Surface Science 500, no. 1 (2002): 218-41. https://doi.org/10.1016/S0039-6028(01)01558-8.

Davis, J. R. Aluminum and Aluminum Alloys. V Alloying - Understanding the Basics. 2nd ed. ASM International, 2001.

Eatemadi, Ali, Hadis Daraee, Hamzeh Karimkhanloo, Mohammad Kouhi, Nosratollah Zarghami, Abolfazl Akbarzadeh, Mozhgan Abasi, Younes Hanifehpour, and Sang Woo Joo. "Carbon nanotubes: properties, synthesis, purification, and medical applications." Nanoscale Research Letters 9, no. 1 (2014): 393. https://doi.org/10.1186/1556-276X-9-393.

Fribourg, G, A. Deschamps, Y. Bréchet, G. Mylonas, G. Labeas, U. Heckenberger, and M. Perez. "Microstructure Modifications Induced by a Laser Surface Treatment in an AA7449 Aluminium Alloy." Materials Science & Engineering: A 528, no. 6 (2011): 2736-47. https://doi.org/10.1016/j.msea.2010.12.018.

He, Zhaoru, Yizhou Shen, Jie Tao, Haifeng Chen, Xiaofei Zeng, Xin Huang, and Ali Abd El-Aty. "Laser Shock Peening Regulating Aluminum Alloy Surface Residual Stresses for Enhancing the Mechanical Properties: Roles of Shock Number and Energy." Surface & Coatings Technology 421 (2021). https://doi.org/10.1016/j.surfcoat.2021.127481.

Jin, Yajuan, Baochun Lu, and Xudong Tang. "Crack-Free Copper Alloy Coating on Aluminum Alloy Fabricated by Laser Cladding." Coatings 13, no. 9 (2023): 1491. https://doi.org/10.3390/coatings13091491.

Kandavalli, Sumanth Ratna, Gadudasu Babu Rao, Praveen Kumar Bannaravuri, Manu Mathai Kanakamani Rajam, Sunanda Ratna Kandavalli, and S. Rajesh Ruban. "Surface strengthening of aluminium alloys/composites by laser applications: A comprehensive review." Materials Today: Proceedings 47 (2021): 6919-25. https://doi.org/10.1016/j.matpr.2021.05.191.

Liu, Quanbing, Zongde Liu, Yue Shen, Yanru Chang, Jiaxuan Li, and Yi Xiao. "A Method for Preparing Alloy Coating on the Aluminum Alloy Substrate via Laser Cladding Technology to Prevent the Galvanic Corrosion of TC4/5083 Couple." Materials Letters 357 (2024). https://doi.org/10.1016/j.matlet.2023.135767.

Lu, Liang, Ting Huang, and Minlin Zhong. "WC Nano-Particle Surface Injection via Laser Shock Peening onto 5A06 Aluminum Alloy." Surface & Coatings Technology 206, no. 22 (2012): 4525-30. https://doi.org/10.1016/j.surfcoat.2012.03.004.

Luo, Kaiyu, Yu Xing, Muran Sun, Lujie Xu, Shengkai Xu, Changyu Wang, and Jinzhong Lu. "Effect of Laser Shock Peening on the Dissolution of Precipitates and Pitting Corrosion of AA6061-T6 with Different Original Surface Roughness." Corrosion Science 228 (2024). https://doi.org/10.1016/j.corsci.2023.111794.

Nayak, Subhadarshi. "Laser Induced Surface Modification of Aluminium Alloys." University of Tennessee - Knoxville, 2004.

Raabe, Dierk, Dirk Ponge, Peter J. Uggowitzer, Moritz Roscher, Mario Paolantonio, Chuanlai Liu, and Helmut Antrekowitsch. "Making sustainable aluminum by recycling scrap: The science of “dirty” alloys." Progress in Materials Science 128 (2022): 100947. https://doi.org/10.1016/j.pmatsci.2022.100947.

Renk, Karl F. Basics of Laser Physics. For Students of Science and Engineering. 1st ed. Springer Nature, 2012. https://doi.org/10.1007/978-3-642-23565-8.

Sahoo, Sarmila. "Aluminium Hybrid Composites Reinforced with SiC and Fly Ash Particles—Recent Developments." In Recent Advances in Layered Materials and Structures, 133-70. Springer Singapore Pte. Limited, 2021. https://doi.org/10.1007/978-981-33-4550-8_6.

Saklakoglu, Nursen, Simge Gencalp Irizalp, Erhan Akman, and Arif Demir. "Near surface modification of aluminum alloy induced by laser shock processing." Optics & Laser Technology 64 (2014): 235-41. https://doi.org/10.1016/j.optlastec.2014.05.028.

Simon, Juliette, Emmanuel Flahaut, and Muriel Golzio. "Overview of Carbon Nanotubes for Biomedical Applications." Materials 12, no. 4 (2019): 624. https://doi.org/10.3390/ma12040624.

Slagter, Alejandra, Jonathan Aristya Setyadji, Eva Luisa Vogt, David Hernández-Escobar, Léa Deillon, and Andreas Mortensen. "Nanoindentation Hardness and Modulus of Al2O3–SiO2–CaO and MnO–SiO2–FeO Inclusions in Iron." Metallurgical and Materials Transactions A 55, no. 5 (2024): 1469-83. https://doi.org/10.1007/s11661-024-07330-x.

Sui, Qi, Ning Hu, Yingrui Su, Yan Wang, and Xiaolei Song. "Tensile Property of 7075 Aluminum Alloy with Strengthening Layer by Laser Remelting-Cladding Treatment." Micromachines 14, no. 11 (2023): 2017. https://doi.org/10.3390/mi14112017.

Trdan, U., J.L. Ocaña, and J. Grum. "Surface modification of aluminium alloys with Laser Shock Processing." STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING 57, no. 5 (2011): 385-93. https://doi.org/10.5545/sv-jme.2010.119.

Tsagkarakis, M.G., F.J. Villarreal, H.J. Baker, D.R. Hall, and S.W. Williams. "Surface Melting of Al–Cu–Mg Alloy Using a Short-Pulse, Planar Waveguide CO2 Laser for Corrosion Resistance Improvement." Journal of Laser Applications 15, no. 4 (2003): 233-39. https://doi.org/10.2351/1.1620005.

Watkins, K.G., M.A. McMahon, and W.M. Steen. "Microstructure and Corrosion Properties of Laser Surface Processed Aluminium Alloys: A Review." Materials Science & Engineering: A 231, no. 1 (1997): 55-61. https://doi.org/10.1016/S0921-5093(97)00034-8.

Zhao, Pengfei, Zimu Shi, Xingfu Wang, Yanzhou Li, Zhanyi Cao, Modi Zhao, and Juhua Liang. "A Review of the Laser Cladding of Metal-Based Alloys, Ceramic-Reinforced Composites, Amorphous Alloys, and High-Entropy Alloys on Aluminum Alloys." Lubricants 11, no. 11 (2023): 482. https://doi.org/10.3390/lubricants11110482.

Zupanič, Franc, and Ivan Anžel. Gradiva. Maribor: Fakulteta za strojništvo, 2007.

Zupanič, Franc. Gradiva: praktikum, 1st ed. Maribor, 1999.

Downloads

Published

15-07-2024

Issue

Section

Ceramic Materials for Advanced Application