Fabrication and Characterization of Tungsten-Based Hard Materials by Novel Mechanical Alloying and Spark Plasma Sintering Methods

Authors

  • Muddassar Hussain Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, Pakistan; and Pakistan Institute of Engineering and Applied Sciences (PIEAS), Department of Nuclear Engineering, Nilore, Islamabad, Pakistan https://orcid.org/0009-0002-7926-5732
  • Muhammad Zarif Pakistan Institute of Engineering and Applied Sciences (PIEAS), Department of Metallurgy and Materials Engineering, Islamabad, Pakistan https://orcid.org/0000-0002-4632-994X
  • Hafiz Zahid Shafi National Institute of Lasers and Optronics, Islamabad, Pakistan
  • Fasial Shahzad Khalifa University, Abu Dhabi, United Arab Emirates
  • Maria Gul Pakistan Institute of Nuclear Science and Technology (PINSTECH), Physics Division, Islamabad, Pakistan
  • Muhammad Hassan National Centre for Physics, Islamabad, Pakistan https://orcid.org/0009-0009-7739-4670
  • Abbas Saeed Hakeem King Fahd University of Petroleum and Minerals Interdisciplinary Research Center for Hydrogen & Energy Storage (IRC-HES)
  • Zafar Iqbal Pakistan Institute of Engineering and Applied Sciences (PIEAS), Department of Metallurgy and Materials Engineering, Islamabad, Pakistan https://orcid.org/0000-0003-1630-6920

Abstract

The influence of Ir and Y₂O₃ on the densification, microstructure, and wear characteristics of pure W-based alloy/composite was examined. The precursor powders, including W, Ir, and Y₂O₃, underwent mechanical alloying for 30 hours, resulting in two compositions: W–1.5 wt.% Ir and W–1.5 wt.% Ir–2 wt.% Y₂O₃. Subsequently, the prepared mixtures were subjected to spark plasma sintering at a temperature of 1650 °C for 5 minutes, with a simultaneous application of 50 MPa pressure. X-ray diffraction, scanning electron microscopy combined with energy dispersive spectroscopy, a micro-Vickers hardness tester, and two-dimensional optical profilometry were employed to analyze the synthesized powders, along with the consolidated and worn samples. Results indicated that the W–1.5 wt. % Ir-2 wt. % Y₂O₃ composite produced a highly dense sample characterized by the smallest grain size, superior micro-hardness, and enhanced wear resistance. The composite achieved values of up to 98% density, 3.6 µm grain size, 4.9 GPa HV₀.₅ hardness, and 2.5 × 10⁻⁵ mm³/Nm wear resistance, in contrast to pure tungsten, which exhibited 83.1% density, 6.6 µm grain size, 1.9 GPa HV₀.₅ hardness, and 6.2 × 10⁻⁵ mm³/Nm wear resistance. Thus, both Ir and Y₂O₃ have been recognized as effective additives that can enhance the consolidation and refinement of tungsten's microstructure under current mild processing conditions. This advancement not only makes these materials commercially viable but also enhances their performance in a range of demanding applications, such as fusion, military, tooling, electrode manufacturing, and coatings.

Keywords:

mechanical alloying, spark plasma sintering, tungsten-iridium-yttria composite, consolidation behavior, microstructure, wear and tribology.
Supporting Agencies
Higher Education Commission (HEC) Pakistan

References

Alloys, W-ni-fe. 2016. “Microwave Sintering of Refractory Metals / Alloys : Microwave Sintering of Refractory Metals / Alloys : W , Mo , Re , W-Cu , W-Ni-Cu and W-Ni-Fe Alloys” 7823 (August): 28–44. https://doi.org/10.1080/08327823.2010.11689768.

Aouadi, S. M., H. Gao, A. Martini, T. W. Scharf, and C. Muratore. 2014. “Lubricious Oxide Coatings for Extreme Temperature Applications: A Review.” Surface and Coatings Technology. https://doi.org/10.1016/j.surfcoat.2014.05.064.

Arshad, Kameel, Ming Yue Zhao, Yue Yuan, Ying Zhang, Zhen Hua Zhao, Bo Wang, Zhang Jian Zhou, and Guang Hong Lu. 2014. “Effects of Vanadium Concentration on the Densification, Microstructures and Mechanical Properties of Tungsten Vanadium Alloys.” Journal of Nuclear Materials 455 (1–3). https://doi.org/10.1016/j.jnucmat.2014.04.019.

Ayodele, Olusoji Oluremi, Mxolisi Brendon Shongwe, Peter Apata Olubambi, Babatunde Abiodun Obadele, and Thabiso Langa. 2018. “Hybrid Spark Plasma Sintering of Materials: A Review.” International Journal of Materials, Mechanics and Manufacturing 6 (6): 360–64. https://doi.org/10.18178/ijmmm.2018.6.6.407.

Barua, Abhishek, Swastik Pradhan, Manisha Priyadarshini, Aman Patra, and Kanchan Kumari. 2024. “Recent Advancement in Tungsten Heavy Alloy Processing for Different Industrial Applications.” Journal of Materials Engineering and Performance. https://doi.org/10.1007/s11665-024-10449-y.

Basak, Sanghita, Debojyoti Nath, and Ratan Das. 2023. “Analysis of Dominant and Intense XRD Peak of (111) Plane of ZnS Nanocrystals for Microstructural Study through Single Line Voigt Method: Calculated Low Dislocation Density Value Emphasizes Larger Stacking of (111) Plane.” Journal of Molecular Structure 1293. https://doi.org/10.1016/j.molstruc.2023.136273.

Blagoveshchenskiy, Yu V., N. V. Isaeva, M. A. Sinaiskiy, A. B. Ankudinov, and V. A. Zelensky. 2018. “Tuning the Properties of Refractory Carbide Nanopowders.” Inorganic Materials: Applied Research 9 (5): 924–29. https://doi.org/10.1134/S2075113318050039.

Bose, Animesh, Rajendra Sadangi, and Randall M. German. 2012. “A Review on Alloying in Tungsten Heavy Alloys.” TMS Annual Meeting 1: 455–65. https://doi.org/10.1002/9781118356074.ch59.

Chanthapan, S., A. Kulkarni, J. Singh, C. Haines, and D. Kapoor. 2012. “Sintering of Tungsten Powder with and without Tungsten Carbide Additive by Field Assisted Sintering Technology.” International Journal of Refractory Metals and Hard Materials 31. https://doi.org/10.1016/j.ijrmhm.2011.09.014.

Chen, Chun Liang, and Sutrisna. 2022. “Development of ODS Tungsten Heavy Alloys Reinforced with Co9Al8W Superalloy Binder by Mechanical Alloying.” Journal of Alloys and Compounds 903. https://doi.org/10.1016/j.jallcom.2022.163762.

Chiteka, Kudzanayi. 2013. “Friction Stir Welding/Processing Tool Materials and Selection.” International Journal of Engineering and Technology 2 (11): 8–18.

Debata, M., Sengupta, P., Mandal, S., Adhikari, D. n.d. “Consolidation of Tungsten-Heavy Alloys.” In Mechanically Alloyed Novel Materials., edited by Shashanka Rajendrachari, 1st ed., 235–256. Springer Singapore. https://doi.org/https://doi.org/10.1007/978-981-97-6504-1.

Deng, H. W., Z. M. Xie, Y. K. Wang, R. Liu, T. Zhang, T. Hao, X. P. Wang, Q. F. Fang, and C. S. Liu. 2018. “Mechanical Properties and Thermal Stability of Pure W and W-0.5 Wt%ZrC Alloy Manufactured with the Same Technology.” Materials Science and Engineering: A 715. https://doi.org/10.1016/j.msea.2017.12.112.

Deng, Shenghua, Tiechui Yuan, Ruidi Li, Fanhao Zeng, Guanghong Liu, and Xiang Zhou. 2017. “Spark Plasma Sintering of Pure Tungsten Powder: Densification Kinetics and Grain Growth.” Powder Technology 310: 264–71. https://doi.org/10.1016/j.powtec.2017.01.050.

Dong, Zhi, Nan Liu, Weiqiang Hu, Xiangwei Kong, Zongqing Ma, and Yongchang Liu. 2019. “The Effect of Y2O3 on the Grain Growth and Densification of W Matrix during Low Temperature Sintering: Experiments and Modelling.” Materials & Design 181: 108080. https://doi.org/10.1016/j.matdes.2019.108080.

Dong, Zhi, Nan Liu, Zongqing Ma, Chenxi Liu, Qianying Guo, and Yongchang Liu. 2017. “Preparation of Ultra-Fine Grain W-Y2O3 Alloy by an Improved Wet Chemical Method and Two-Step Spark Plasma Sintering.” Journal of Alloys and Compounds 695: 2969–73. https://doi.org/10.1016/j.jallcom.2016.11.364.

Duerrschnabel, Michael, Steffen Antusch, Birger Holtermann, Ute Jaentsch, Siegfried Baumgaertner, Carsten Bonnekoh, Mirjam Hoffmann, Jan Hoffmann, and Michael Rieth. 2020. “Elucidating the Microstructure of Tungsten Composite Materials Produced by Powder Injection Molding.” Nuclear Materials and Energy 24 (June): 100766. https://doi.org/10.1016/j.nme.2020.100766.

EN ISO 3369. 2010. “Impermeable Sintered Metal Materials and Hardmetals - Determination of Density (ISO 3369:2006).” BSI Standards Publication.

Fan, Jinglian, Yong Han, Pengfei Li, Zhiyu Sun, and Qiang Zhou. 2014. “Micro/Nano Composited Tungsten Material and Its High Thermal Loading Behavior.” Journal of Nuclear Materials 455 (1): 717–23. https://doi.org/10.1016/j.jnucmat.2014.09.037.

Froes, F. H., C. R. Clark, C. Suryanarayana, E. G. Baburaj, and B. D. Bryskin. 1998. “Formation of W-Re Solid Solution by Mechanical Alloying.” Materials and Manufacturing Processes 13 (5): 657–70. https://doi.org/10.1080/10426919808935291.

German, Randall M. 2015. “Lower Sintering Temperature Tungsten Alloys for Space Research.” International Journal of Refractory Metals and Hard Materials 53: 74–79. https://doi.org/10.1016/j.ijrmhm.2015.04.020.

German, Randall M, John L Meyer, and Ahmed Ei-desouky. 2012. “TIMIS2012.”

Goto, Masahiro, Akira Kasahara, and Masahiro Tosa. 2006. “Low Frictional Property of Copper Oxide Thin Films Optimised Using a Combinatorial Sputter Coating System.” In Applied Surface Science. Vol. 252. https://doi.org/10.1016/j.apsusc.2005.03.236.

Hayden, H. W., and J. H. Brophy. 1963. “The Activated Sintering of Tungsten with Group VIII Elements.” Journal of the Electrochemical Society 110 (7): 805–10. https://doi.org/10.1149/1.2425876.

Heo, Youn Ji, Eui Seon Lee, Jeong Hyun Kim, Young In Lee, Young Keun Jeong, and Sung Tag Oh. 2022. “Synthesis and Characterization of W Composite Powder With La2O3-Y2O3 Nano-Dispersoids By Ultrasonic Spray Pyrolysis.” Archives of Metallurgy and Materials 67 (4): 1507–10. https://doi.org/10.24425/amm.2022.141083.

Hesabi, Z R, S Kamrani, A Simchi, S M S Reihani, Z R Hesabi, S Kamrani, A Simchi, and S M S Reihani. 2013. “Effect of Nanoscaled Reinforcement Particles on the Structural Evolution of Aluminium Powder during Mechanical Milling Effect of Nanoscaled Reinforcement Particles on the Structural Evolution of Aluminium Powder during Mechanical Milling” 5899. https://doi.org/10.1179/174329007X189658.

Iqbal, Zafar, Nouari Saheb, and Abdel Rahman. 2016. “W-25 % Re-HfC Composite Materials for Pin Tool Material Applications : Synthesis and Consolidation.” Journal of Alloys and Compounds 674: 189–99. https://doi.org/10.1016/j.jallcom.2016.03.030.

Karafi, Toufik, Abdellah Tahiri, Mouhamed Idiri, Chabba Chabba, and Brahim Boubeker. 2023. “EFFECT THE CONCENTRATION OF RHENIUM ON THE MECHANICAL PROPERTIES AND DISLOCATION MECHANISMS OF TUNGSTEN-RHENIUM ALLOY.” International Journal on Technical and Physical Problems of Engineering 15 (4).

Kiran, U Ravi, A Panchal, M Prem Kumar, M Sankaranarayana, G V S Nageswara Rao, and T K Nandy. 2017. “Refractory Metal Alloying: A New Method for Improving Mechanical Properties of Tungsten Heavy Alloys.” Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2017.03.174.

Lakshmi Prasad, B. S., and A. Raja Annamalai. 2021. “Effect of Rhenium Addition on Tungsten Heavy Alloys Processed through Spark Plasma Sintering.” Ain Shams Engineering Journal 12 (3). https://doi.org/10.1016/j.asej.2021.02.022.

Lang, E., X. Wang, R. Kolasinski, and J. P. Allain. 2025. “Dispersion-Strengthened Tungsten Alloy Composites.” Fusion Energy Technology R and D Priorities, January, 65–69. https://doi.org/10.1016/B978-0-443-13629-0.00008-3.

Lau, Alexander, Jan Willem Coenen, Daniel Schwalenberg, Yiran Mao, Till Höschen, Johann Riesch, Leonard Raumann, et al. 2023. “Bulk Tungsten Fiber-Reinforced Tungsten (Wf/W) Composites Using Yarn-Based Textile Preforms.” Journal of Nuclear Engineering 4 (2): 375–90. https://doi.org/10.3390/jne4020027.

Lee, Dongju, Malik Adeel Umer, Ho J. Ryu, and Soon H. Hong. 2014. “The Effect of HfC Content on Mechanical Properties HfC-W Composites.” International Journal of Refractory Metals and Hard Materials 44: 49–53. https://doi.org/10.1016/j.ijrmhm.2014.01.012.

Lee, Eui Seon, Youn Ji Heo, Young In Lee, Young Keun Jeong, and Sung Tag Oh. 2022. “Microstructural Characterization and Densification of W-1 Wt% La2O3 Composite Powders Synthesized by Ultrasonic Spray Pyrolysis.” Journal of Materials Science 57 (38): 17946–56. https://doi.org/10.1007/s10853-022-07478-0.

Lee, G, J Mckittrick, E Ivanov, and E A Olevsky. 2016. “Int . Journal of Refractory Metals and Hard Materials Densi Fi Cation Mechanism and Mechanical Properties of Tungsten Powder Consolidated by Spark Plasma Sintering.” RMHM 61: 22–29. https://doi.org/10.1016/j.ijrmhm.2016.07.023.

Lee, Jin-kyu, Song-yi Kim, Ryan T Ott, Jin-young Kim, and Min-ha Lee. n.d. “Effect of Reinforcement Phase on the Mechanical Property of Tungsten Nanocomposite Synthesized by Spark Plasma Sintering,” 1–19.

Lemahieu, N., J. Linke, G. Pintsuk, G. Van Oost, M. Wirtz, and Z. Zhou. 2014. “Performance of Yttrium Doped Tungsten under ’Edge Localized Mode’-like Loading Conditions.” In Physica Scripta. Vol. T159. https://doi.org/10.1088/0031-8949/2014/T159/014035.

Li, Lulu, Zhi Dong, Zongqing Ma, Chenxi Liu, Liming Yu, and Yongchang Liu. 2023. “Ultrahigh Strength and Toughness in W-Y2O3 Alloy with Bimodal and Lamellar Structures.” Materials Research Letters 11 (6): 439–45. https://doi.org/10.1080/21663831.2023.2181110.

Li, Tong, Tianwei Liu, Shiteng Zhao, Yan Chen, Junhua Luan, Zengbao Jiao, Robert O. Ritchie, and Lanhong Dai. 2023. “Ultra-Strong Tungsten Refractory High-Entropy Alloy via Stepwise Controllable Coherent Nanoprecipitations.” Nature Communications 14 (1): 1–7. https://doi.org/10.1038/s41467-023-38531-4.

Li, Xiaojing, Hanli Liu, Peng Hu, Jinshu Wang, Yunfei Yang, Hongyi Li, and Wenyuan Zhou. 2022. “Nanostructured TiC Dispersion-Strengthened Tungsten Composite with Remarkably Improved He Ion Irradiation Resistance.” International Journal of Refractory Metals and Hard Materials 107 (September): 105900. https://doi.org/10.1016/J.IJRMHM.2022.105900.

Liu, R, Z M Xie, Q F Fang, T Zhang, X P Wang, T Hao, C S Liu, and Y Dai. 2016. “Nanostructured Yttria Dispersion-Strengthened Tungsten Synthesized by Sol e Gel Method.” Journal of Alloys and Compounds 657: 73–80. https://doi.org/10.1016/j.jallcom.2015.10.059.

Liu, R, Z M Xie, T Hao, Y Zhou, X P Wang, Q F Fang, and C S Liu. 2014. “Fabricating High Performance Tungsten Alloys through Zirconium Micro-Alloying and Nano-Sized Yttria Dispersion Strengthening.” JOURNAL OF NUCLEAR MATERIALS 451 (1–3): 35–39. https://doi.org/10.1016/j.jnucmat.2014.03.029.

Liu, R, Z M Xie, J F Yang, T Zhang, T Hao, X P Wang, Q F Fang, and C S Liu. 2018. “Recent Progress on the R & D of W-ZrC Alloys for Plasma Facing Components in Fusion Devices.” Nuclear Materials and Energy 16 (May): 191–206. https://doi.org/10.1016/j.nme.2018.07.002.

Luo, Laima, Jing Shi, Jinshan Lin, Xiang Zan, Xiaoyong Zhu, Qiu Xu, and Yucheng Wu. 2016. “Microstructure and Performance of Rare Earth Element-Strengthened Plasma-Facing Tungsten Material.” Nature Publishing Group, no. March: 1–9. https://doi.org/10.1038/srep32701.

Ma, J, and S G Zhu. 2010. “Int . Journal of Refractory Metals and Hard Materials Direct Solid-State Synthesis of Tungsten Carbide Nanoparticles from Mechanically Activated Tungsten Oxide and Graphite” 28: 623–27. https://doi.org/10.1016/j.ijrmhm.2010.06.004.

Marchhart, Trevor, Chase Hargrove, Alexandru Marin, Hanna Schamis, Ashrakat Saefan, Eric Lang, Xing Wang, and Jean Paul Allain. 2024. “Discovering Tungsten-Based Composites as Plasma Facing Materials for Future High-Duty Cycle Nuclear Fusion Reactors.” Scientific Reports 14 (1): 1–13. https://doi.org/10.1038/s41598-024-64614-3.

Martínez, J., B. Savoini, M. A. Monge, A. Muñoz, D. E.J. Armstrong, and R. Pareja. 2013. “Thermal Stability of the Grain Structure in the W-2V and W-2V-0.5Y 2O3 Alloys Produced by Hot Isostatic Pressing.” In Fusion Engineering and Design. Vol. 88. https://doi.org/10.1016/j.fusengdes.2013.05.057.

Merker, J., D. Lupton, M. Töpfer, and H. Knake. 2001. “High Temperature Mechanical Properties of the Platinum Group Metals: Elastic Properties of Platinum, Rhodium and Iridium and Their Alloys at High Temperatures.” Platinum Metals Review 45 (2): 74–82.

Min, Guensik, Yeonju Oh, Hwangsun Kim, Eunjoo Shin, Ki Baek Roh, Jeongseok Kim, Nojun Kwak, et al. 2023. “Effect of Yttrium Doping in Tungsten on Sinterability and Properties as a Plasma-Facing Material.” Journal of Alloys and Compounds 953. https://doi.org/10.1016/j.jallcom.2023.169961.

Mishra, R.S., and Z.Y. Ma. 2005. “Friction Stir Welding and Processing.” Materials Science and Engineering: R: Reports 50 (1–2): 1–78. https://doi.org/10.1016/j.mser.2005.07.001.

Muñoz, A., B. Savoini, E. Tejado, M. A. Monge, J. Y. Pastor, and R. Pareja. 2014. “Microstructural and Mechanical Characteristics of W-2Ti and W-1TiC Processed by Hot Isostatic Pressing.” Journal of Nuclear Materials 455 (1–3). https://doi.org/10.1016/j.jnucmat.2014.06.064.

Nisar, Ambreen, Cheng Zhang, Benjamin Boesl, and Arvind Agarwal. 2021. “Unconventional Materials Processing Using Spark Plasma Sintering.” Ceramics. https://doi.org/10.3390/ceramics4010003.

Nygren, R. E., R. Raffray, D. Whyte, M. A. Urickson, M. Baldwin, and L. L. Snead. 2011. “Making Tungsten Work - ICFRM-14 Session T26 Paper 501 Nygren et Al. Making Tungsten Work.” In Journal of Nuclear Materials. Vol. 417. https://doi.org/10.1016/j.jnucmat.2010.12.289.

Oda, Eiji, Kei Ameyama, and Satoru Yamaguchi. 2006. “Fabrication of Nano Grain Tungsten Compact by Mechanical Milling Process and Its High Temperature Properties” 504: 573–78. https://doi.org/10.4028/www.scientific.net/MSF.503-504.573.

Oshrieh, Mohammad Bagher, Karim Zangenemadar, Hasan Abbaszadeh, Meysam Ahangarkani, and Hamedreza Javadian. 2024. “Improvement of Mechanical and Wear Properties of Tungsten Heavy Alloy Using Two-Stage Sintering and Carburizing Processes.” Journal of Materials Engineering and Performance, no. Ref 22. https://doi.org/10.1007/s11665-024-09782-z.

Parthasarathy, T. A., M. G. Mendiratta, and D. M. Dimiduk. 2002. “Oxidation Mechanisms in Mo-Reinforced Mo5SiB2(T2)-Mo3Si Alloys.” Acta Materialia 50 (7). https://doi.org/10.1016/S1359-6454(02)00039-3.

Pitts, R. A., S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, S. Lisgo, A. S. Kukushkin, et al. 2013. “A Full Tungsten Divertor for ITER: Physics Issues and Design Status.” Journal of Nuclear Materials 438 (SUPPL). https://doi.org/10.1016/j.jnucmat.2013.01.008.

Pramanik, Sudipta, Ajeet K. Srivastav, Bobu Manuel Jolly, Niraj Chawake, and B. S. Murty. 2019. “Effect of Re on Microstructural Evolution and Densification Kinetics during Spark Plasma Sintering of Nanocrystalline W.” Advanced Powder Technology 30 (11): 2779–86. https://doi.org/10.1016/j.apt.2019.08.025.

Que, Zhongyou, Xingyu Li, Lin Zhang, En Mei, Chenguang Guo, Haishen Sun, Junming Liu, Mingli Qin, Gang Chen, and Xuanhui Qu. 2025. “Preparation and Properties of Tungsten-Rhenium Alloys Resistant to Ultra-High Temperatures.” International Journal of Refractory Metals and Hard Materials 127 (February): 106975. https://doi.org/10.1016/J.IJRMHM.2024.106975.

R.M .GERMAN, Z.A.MUNIR. 1977. “Rhenium Activating Sintering.” Journal of the Less-Common Metals 53: 141–46.

Rahul, R, K V Rajulapati, G M Reddy, and K B S Rao. n.d. “Development of Aluminium Based Surface Nano Composites Using Friction Stir Processing,” 1–9.

Rai, R., A. De, H. K.D.H. Bhadeshia, and T. DebRoy. 2011. “Review: Friction Stir Welding Tools.” Science and Technology of Welding and Joining 16 (4): 325–42. https://doi.org/10.1179/1362171811Y.0000000023.

Ren, Chai, Z. Zak Fang, Huan Zhang, and Mark Koopman. 2016. “The Study on Low Temperature Sintering of Nano-Tungsten Powders.” International Journal of Refractory Metals and Hard Materials 61. https://doi.org/10.1016/j.ijrmhm.2016.10.003.

Riesch, J., A. von Müller, Y. Mao, J. W. Coenen, B. Böswirth, S. Elgeti, M. Fuhr, et al. 2024. “Progress in the Development of Industrial Scale Tungsten Fibre-Reinforced Composite Materials.” Nuclear Materials and Energy 38 (March): 101591. https://doi.org/10.1016/J.NME.2024.101591.

Roy, Amit, Payank Patel, Navid Sharifi, Richard R. Chromik, Pantcho Stoyanov, and Christian Moreau. 2023. “Binary and Ternary Lubricious Oxides for High Temperature Tribological Applications: A Review.” Results in Surfaces and Interfaces 11. https://doi.org/10.1016/j.rsurfi.2023.100117.

Rybin, V, V Lozanov, A Utkin, A Matvienko, and N Baklanova. 2019. “The Formation of Disordered Intermetallic Phase during the Solid-State Interaction of WC with Ir.” Journal of Alloys and Compounds 775: 503–10. https://doi.org/10.1016/j.jallcom.2018.10.118.

Saheb, Nouari, Zafar Iqbal, Abdullah Khalil, Abbas Saeed Hakeem, Nasser Al Aqeeli, Tahar Laoui, Amro Al-Qutub, and René Kirchner. 2012. “Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review.” Journal of Nanomaterials 2012. https://doi.org/10.1155/2012/983470.

Samsonov, G. V., and V. I. Yakovlev. 1970. “Activation of the Sintering Process of Tungsten by the Platinum-Group Metals.” Soviet Powder Metallurgy and Metal Ceramics 9 (1): 30–36. https://doi.org/10.1007/BF00796945.

Setyawan, Wahyu, and Richard J. Kurtz. 2012. “Effects of Transition Metals on the Grain Boundary Cohesion in Tungsten.” Scripta Materialia 66 (8): 558–61. https://doi.org/10.1016/j.scriptamat.2012.01.002.

Shabalin, Igor L. 2019. Ultra-High Temperature Materials II. Ultra-High Temperature Materials II. https://doi.org/10.1007/978-94-024-1302-1.

Shah, V., J. A.W. van Dommelen, E. Altstadt, A. Das, and M. G.D. Geers. 2020. “Brittle-Ductile Transition Temperature of Recrystallized Tungsten Following Exposure to Fusion Relevant Cyclic High Heat Load.” Journal of Nuclear Materials 541. https://doi.org/10.1016/j.jnucmat.2020.152416.

Siller, M., N. Bostrom, P. Bogust, J. Schatte, S. Gerzoskovitz, H. Clemens, R. Pippan, and V. Maier-Kiener. 2023. “Impact of Microstructure on the Performance of WRe10 Conversion Layers for Stationary and Rotating Anodes.” International Journal of Refractory Metals and Hard Materials 114 (August): 106244. https://doi.org/10.1016/J.IJRMHM.2023.106244.

Skoczylas, Paweł, and Mieczysław Kaczorowski. 2021. “Preliminary Study of the Rhenium Addition on the Structure and Mechanical Properties of Tungsten Heavy Alloy.” Materials 14 (23): 34–44. https://doi.org/10.3390/ma14237365.

Snead, Lance L, David T Hoelzer, Michael Rieth, and Andre A N Nemith. 2019. Chapter 13 - Refractory Alloys: Vanadium, Niobium, Molybdenum, Tungsten. Structural Alloys for Nuclear Energy Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-397046-6.00013-7.

Taillard, R, and J Foct. 2008. “Evolution of Grain Size in Oxide Dispersion Strengthened Tungsten Alloys during Their Elaboration by Ball Milling and Sintering” 5: 669–82.

Thompson, Brian. 2011. “Tungsten-Based Tool Material Development for the Friction Stir Welding of Hard Metals.” TMS Annual Meeting, 105–12. https://doi.org/10.1002/9781118062302.ch14.

Vaneela, Somisetty. 2017. “DISLOCATION DENSITY IN MULTICOMPONENT ALLOYS CoNi , CoFeNi,” 105–10.

Veleva, L., Z. Oksiuta, U. Vogt, and N. Baluc. 2009. “Sintering and Characterization of W–Y and W–Y2O3 Materials.” Fusion Engineering and Design 84 (7–11): 1920–24. https://doi.org/10.1016/J.FUSENGDES.2008.12.001.

Verma, Krishna Kamlesh, Jitesh Kumar, K. V.Mani Krishna, Shashank Sharma, M. Radhakrishnan, Sameehan S. Joshi, Rajarshi Banerjee, and Narendra Dahotre. 2025. “Effect of Rhenium on Evolution of Microstructure in Tungsten-Rhenium Fabricated by Laser Powder Bed Fusion.” International Journal of Refractory Metals and Hard Materials 128 (April): 107046. https://doi.org/10.1016/J.IJRMHM.2025.107046.

Wahid, Mohd Atif, Arshad Noor Siddiquee, Zahid Akhtar Khan, and Mohammad Asjad. 2016. “Friction Stir Welds of Al Alloy-Cu: An Investigation on Effect of Plunge Depth.” Archive of Mechanical Engineering 63 (4): 619–34. https://doi.org/10.1515/meceng-2016-0035.

Wang, R., Z. M. Xie, Y. K. Wang, J. P. Song, Q. F. Fang, R. Liu, Y. Jiang, et al. 2019. “Fabrication and Characterization of Nanocrystalline ODS-W via a Dissolution-Precipitation Process.” International Journal of Refractory Metals and Hard Materials 80. https://doi.org/10.1016/j.ijrmhm.2019.01.002.

Wang, Yiming, and Jarir Aktaa. 2017. “Microstructure and Texture in W and W-1wt%La2O3 Processed by High-Pressure Torsion.” Scripta Materialia 139: 22–25. https://doi.org/10.1016/j.scriptamat.2017.06.008.

Wang, Yujin, Hua Xin Peng, Yu Zhou, and Gui Ming Song. 2011. “Influence of ZrC Content on the Elevated Temperature Tensile Properties of ZrCp/W Composites.” Materials Science and Engineering A 528 (3): 1805–11. https://doi.org/10.1016/j.msea.2010.11.029.

Watanabe, Shotaro, Shuhei Nogami, Jens Reiser, Michael Rieth, Sven Sickinger, Siegfried Baumgärtner, Takeshi Miyazawa, and Akira Hasegawa. 2019. “Tensile and Impact Properties of Tungsten-Rhenium Alloy for Plasma-Facing Components in Fusion Reactor.” Fusion Engineering and Design 148. https://doi.org/10.1016/j.fusengdes.2019.111323.

Wu, Mingyu, Zhihang Wang, Ningning Zhang, Changchun Ge, and Yujuan Zhang. 2021. “Theoretical Predictions of the Structural and Mechanical Properties of Tungsten-Rare Earth Element Alloys.” Materials 14 (11). https://doi.org/10.3390/ma14113046.

Wu, Zaoming, Lin He, Linsen Ye, Xiaofeng Yang, Jiajia Zhang, and Hongbo Lei. 2023. “Ultrafine-Grained W-Based Alloys Prepared by HIP with Ultrahigh Hardness and Excellent Thermal Stability.” International Journal of Refractory Metals and Hard Materials 115. https://doi.org/10.1016/j.ijrmhm.2023.106318.

Xie, Z. M., R. Liu, Q. F. Fang, Y. Zhou, X. P. Wang, and C. S. Liu. 2014. “Spark Plasma Sintering and Mechanical Properties of Zirconium Micro-Alloyed Tungsten.” Journal of Nuclear Materials. https://doi.org/10.1016/j.jnucmat.2013.09.045.

Xie, Z. M., T. Zhang, R. Liu, Q. F. Fang, S. Miao, X. P. Wang, and C. S. Liu. 2015. “Grain Growth Behavior and Mechanical Properties of Zirconium Micro-Alloyed and Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys.” International Journal of Refractory Metals and Hard Materials 51: 180–87. https://doi.org/10.1016/j.ijrmhm.2015.03.019.

Yamabe-mitarai, Yoko, Tomohiro Maruko, Tomoaki Miyazawa, and Tosiyuki Morino. 2005. “Solid Solution Hardening Effect of Ir” 479: 703–6. https://doi.org/10.4028/www.scientific.net/MSF.475-479.703.

Yamamoto, Takafumi, Masanori Hara, and Yuji Hatano. 2021. “Cracking Behavior and Microstructural, Mechanical and Thermal Characteristics of Tungsten–Rhenium Binary Alloys Fabricated by Laser Powder Bed Fusion.” International Journal of Refractory Metals and Hard Materials 100 (November): 105651. https://doi.org/10.1016/J.IJRMHM.2021.105651.

Yar, M. A., Sverker Wahlberg, Hans Bergqvist, H. G. Salem, Mats Johnsson, and Mamoun Muhammed. 2011. “Spark Plasma Sintering of Tungsten-Yttrium Oxide Composites from Chemically Synthesized Nanopowders and Microstructural Characterization.” Journal of Nuclear Materials 412 (2). https://doi.org/10.1016/j.jnucmat.2011.03.007.

Yin, Chao, Dmitry Terentyev, Tao Zhang, Shuhei Nogami, Steffen Antusch, Chih Cheng Chang, Roumen H. Petrov, and Thomas Pardoen. 2021. “Ductile to Brittle Transition Temperature of Advanced Tungsten Alloys for Nuclear Fusion Applications Deduced by Miniaturized Three-Point Bending Tests.” International Journal of Refractory Metals and Hard Materials 95. https://doi.org/10.1016/j.ijrmhm.2020.105464.

Yin, Chao, Dmitry Terentyev, Tao Zhang, Roumen H. Petrov, and Thomas Pardoen. 2020. “Impact of Neutron Irradiation on the Strength and Ductility of Pure and ZrC Reinforced Tungsten Grades.” Journal of Nuclear Materials 537. https://doi.org/10.1016/j.jnucmat.2020.152226.

Yoshiyasu ITOH** and Yutaka ISHIWATA**. 1996. “Strength Properties of Yttrim-Oxide-Dispersed Tungsten Alloy.” JSME International 39: 429–34.

Zhang, Yue, Artur V. Ganeev, Jing Tao Wang, Jin Qiang Liu, and Igor V. Alexandrov. 2009. “Observations on the Ductile-to-Brittle Transition in Ultrafine-Grained Tungsten of Commercial Purity.” Materials Science and Engineering: A 503 (1–2). https://doi.org/10.1016/j.msea.2008.07.074.

Zhao, Mingyue, Zhangjian Zhou, Qingming Ding, Ming Zhong, and Kameel Arshad. 2015. “Effect of Rare Earth Elements on the Consolidation Behavior and Microstructure of Tungsten Alloys.” International Journal of Refractory Metals and Hard Materials 48: 19–23. https://doi.org/10.1016/j.ijrmhm.2014.07.014.

Zhao, Siqi, Yongqi Lv, Ziwei Zhang, and Jinglian Fan. 2024. “Synthesis and Characterization of W-Y2O3 Composites with Core-Shell Structure via Wet Chemical Method in an Acidic Solution.” International Journal of Refractory Metals and Hard Materials 122 (August): 106729. https://doi.org/10.1016/J.IJRMHM.2024.106729.

Zhou, Zhangjian, Jun Tan, Dandan Qu, Gerald Pintsuk, Manfred Rödig, and Jochen Linke. 2012. “Basic Characterization of Oxide Dispersion Strengthened Fine-Grained Tungsten Based Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering.” Journal of Nuclear Materials 431 (1–3). https://doi.org/10.1016/j.jnucmat.2011.11.039.

Published

30-06-2025